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I. rNTRODUCTIO:"

It has been shown by Passow and Roulier [8] and by McAllister and
Roulier [6] that it is impossible to interpolate convex data by a smooth,
convex, piecewise polynomial with fixed knots and bounded degree, inde
pendent of the data and knots. 1ndeed, a lower bound for this degree is given
in [6] and [8] which shows that a suitable choice of the y-coordinates of the
data points can make the degree as large as desired.

In this paper. we show that the lower bound mentioned above is best
possible. This is accomplished by observing that the classical Markov
inequality cannot be improved by restricting consideration to convex in
creasing polynomials.

2. NOTATIO'\ AND BACKGROU:"D

For each nonnegative integer n, let ITI! denote the set of algebraic po~r

110mials ofdegree 11 or less. For such a given n. a mesh

with
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and a nonnegative integer /II II. consider the set of nth-degree splines of
deficiency n - 111 with knots ,1:

5,,"'(,1) = {jE C"[tu ' t\[]:fE JIn on [t i - 1 , t,.], i = 1.. .. , :II;.

Let data {(Xi' Yi);7=0 with XfJ ' .... <. XI' be given. The data is increasing
and COlll'ex if°< 51 < 5~ ''''-. ... < 5.v ' where

i = I, ... , N.

If fE 5.1(,1) is convex and increasing on [xo , x.v] and satisfies !(Xi) =

)'i ' i = 0, j .... , N. then a lower bound for n can be found in terms of the
slopes {5il;:'1 .

Passow and Roulier [8] show such a lower bound for ,1 = {-I, 1,3, 5} and
McAllister and Roulier [6] generalize this result to arbitrary fixed knots ,1
which need not consist entirely of interpolation abscissas. We present the
latter result here.

THEOREM 2. j. Let mesh ,1 and convex, increasing data (Xi, YJ, i ~,

0, 1,2,3, be given. IffE 5n
1(,1) satisfies

and
!(x,l = .1',. i ~c 0. L 2, 3. (2.1 )

then
f is convex and increasing on [xo ' x 3 ], (2.2)

II~

(X 2 - x 1)(53 - 52)
~~--~~--

(Xl - X o) 51 '
Xl - I

(2.3)

(2.4)

Jl'here 1= max{x E ,1: x <. Xl: and fL = mintx E ,1: X > Xl;'

We note that if ,1 = {xu' Xl • X~ ,.1.':1; then I '~. Xo and fL = X~ and (2.3)
becomes

5:!
S~-=-S~ - 51' .

It is then shown in [6] and [8] that a suitable choice of YO')'l'.h • Ya will
force n to be as large as desired in (2.3) (and (2.4)).

3. MARKOV hEQUALlTIES

The classical Markov inequality states that if p E JIn and if .l .: is the sup
norm on [a. b], then

p'
211~

b-a
p . (3.1 )
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Moreover, this inequality cannot be improved. For example, the Chebyshev
polynomials actually give equality in (3.1). Erdos [3] has shown that (3.1) can
be improved by restricting the class of polynomials. That is. n2 in (3.1) can
be replaced by en/2 for polynomials with only real zeros not in [a, b].

The purpose of this section is to show that the exponent 2 in (3.1) cannot
be reduced by restricting consideration to the class of convex, increasing
polynomials. This result will be used in the following section to produce the
theorem alluded to in Section I.

We proceed to the first result. Let Pn be the nth degree Legendre poly
nomial and define

We note that

.;r r"sn(x) == I (p~(tW dt dlA·
'0 '0

Sn(O) = 0,

Sn is convex and increasing on [0, I].

(3.2)

Moreover, if we let 'I . !' be the sup norm on [0. I], then it can be shown that

(3.3)

One proves (3.3) by observing that

. Sn I' = s,,(l)
and

S;,' = s~(l).

Then show that

S~(I) = P;'( I) p~(l) - p;(l)

p;'(l) ,:;: s ,,(I) s:; 2p~( I).

The following are either well known or follow easily by successively
differentiating the well-known differential equation (see [9])

(l - x2) p~(x) - 2xp;,(x) ~ 11(11 ~. I) Pn(x) = O.

Pn(l) = I

, (I) = 11(11 ~ I)
P" 2

p;'(l) = 11(11 ~41) - 2 p~(I) = (11(11 -,- 41) - 2 )( 11(11 ~ I) )

"'(1)="("-1)-6 "(I)
Pn 6 Pn'
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It then follo\\'s from these that

1/( /I 1)
--------- -

6

Thus, (3.3) follows.
But Sn E II~II-2 . Thus, it follows from (3.3) that given any interval [ao b), there
is a sequence of polynomials ':qdk~o 0 q", E II,; . such that q,; are nonnegative.
convex. and increasing on [ao b), q,.(a) = 0, and

24(b - a)

That is if k = 2/1 - 1 or 211 - 2 we define qdx)c sn«x - a):(b - a»). This
leads us to state

THEOREM 3.1. Markoc's inequality (3.1) cannot be improved by replacing
n2 by some lower power olnlor com'ex increasing polynomials.

4. CONVEX. [NCREASli\G SPU"ES

We now use the results of the previous section to show that in the general
case the estimate (2.4) cannot be improved by replacing n2 by some [ower
power of 11.

THEORnl 4.1. Let.d = {xu. Xl . X 2 , x:J; be gicen. Theil lor each positire
integer n there exists In E 5/(.1) concex and increasing 011 [xo 0 x 3] so that
f(x, . In(x,))}~~o is convex, increases and

where

(4.1 )

5 = .t~(Xi) --fn(xi-d
',It Xi - .\"1-1

i = 1.2.3.

Proof Let n be given. If II = 1, the problem is trivial. So. assume that
n 1, We construct In E 5 r,1(.1) satisfying the second inequality of (4. I). The
first inequality follows from (2.4). To perform this construction we make use
of (3.4). By (3.4). we choose qr, E II" convex and increasing on [XII' Xl) such
that
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and

Now define

.tAx) = q,,(x).

= q,,(X1) + q~(Xl)(X - Xl) ~ X35~nX~ (x - X2)~'

Then!" E 5/(.1) is increasing and convex. and

and so

This shows that {(Xi .fnCXi»}7~1 is increasing convex and that
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(4.2)

On the other hand, by (4.2),

and so

This proves the theorem.
The same approach can be used to show that the more general estimate (2.3)

cannot be improved either.
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